Equivalent Circulation Density Analysis of Geothermal Well by Coupling Temperature

نویسندگان

  • Xiuhua Zheng
  • Chenyang Duan
  • Hongyu Ye
  • Zheng Yan
  • Zhiqing Wang
چکیده

The accurate control of the wellbore pressure not only prevents lost circulation/blowout and fracturing formation by managing the density of the drilling fluid, but also improves productivity by mitigating reservoir damage. Calculating the geothermal pressure of a geothermal well by constant parameters would easily bring big errors, as the changes of physical, rheological and thermal properties of drilling fluids with temperature are neglected. This paper researched the wellbore pressure coupling by calculating the temperature distribution with the existing model, fitting the rule of density of the drilling fluid with the temperature and establishing mathematical models to simulate the wellbore pressures, which are expressed as the variation of Equivalent Circulating Density (ECD) under different conditions. With this method, the temperature and ECDs in the wellbore of the first medium-deep geothermal well, ZK212 Yangyi Geothermal Field in Tibet, were determined, and the sensitivity analysis was simulated by assumed parameters, i.e., the circulating time, flow rate, geothermal gradient, diameters of the wellbore, rheological models and regimes. The results indicated that the geothermal gradient and flow rate were the most influential parameters on the temperature and ECD distribution, and additives added in the drilling fluid should be added carefully as they change the properties of the drilling fluid and induce the redistribution of temperature. To ensure the safe drilling and velocity of pipes tripping into the hole, the depth and diameter of the wellbore are considered to control the surge pressure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geothermal heating, diapycnal mixing and the abyssal circulation

The dynamical role of geothermal heating in abyssal circulation is reconsidered using three independent arguments. First, we show that a uniform geothermal heat flux close to the observed average (86.4mWm−2) supplies as much heat to near-bottom water as a diapycnal mixing rate of ∼10−4 m2 s−1 – the canonical value thought to be responsible for the magnitude of the present-day abyssal circulatio...

متن کامل

Fluid density distribution in a high temperature, stratified thermohaline system: implications for saline hydrothermal circulation

Density distribution within the Salton Sea geothermal system, of fluids ranging from 20°C to 325X, has been computed using chemical and thermal data from geothermal production well tests and curve-fit models of Na-Ca-K chloride solution properties. Density corrections can easily be made to iO.01 g/cm3 for solute effects of each of the dominant chloride salts as well as pressure above vapor satu...

متن کامل

Modified mathematical model for variable fill fluid coupling

Variable fill fluid couplings are used in the speed control units. Also, variation in coupling oil volume is used in adapting one size of coupling to a wider range of power transmission applications. Available model for the partially filled fluid couplings, has a good performance for couplings with fixed amount of oil but their performance will be degraded if they are used for the variable fill...

متن کامل

A SIMULATION OF MANAGED PRESSURE DRILLING IN IRANIAN DARQUAIN OIL FIELD

The narrow operating window between pore pressure and fracture pressure makes drilling difficult in some operations. A feasibility study of managed pressure drilling (MPD) is carried out on Iran Darquain oil field. The previous wells drilled in this field showed that mud returns were lost during drilling Gadvan formation. The present work addresses this problem by means of surface back pressure...

متن کامل

The Use of Nanoaccelerator in Cement Slurries in Low Temperature Well Conditions

It has long been known that temperature during circulation and after cement placement is one of the most important parameters for slurry design and the success in cement production. Conventional cements and low density cement slurries usually take a long time to set and cannot provide significant compressive strength. Therefore, it is important to design appropriate low density cement slurries ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017